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Abstract: In this paper, we reconsider the energy and tension laws of the Ricci flat black

hole by taking the contribution of the tension term into account. After this considering and

inspired by the interchange symmetry between the Ricci flat black hole and the AdS soliton

solution which arises from the double analytic continuation of the time and compact spatial

direction, we find out the analogy of the energy and tension laws of the AdS soliton solution.

Moreover, we also investigate the energy and tension laws of the boosted Ricci flat black

hole, and discuss the boosted AdS soliton solution. However, although there is the same

interchange symmetry between the boosted Ricci flat black hole and boosted AdS soliton,

the analogy of laws of the boosted AdS soliton solution may be of no sense for the existence

of the closed timelike curves and conical singularity. In spite of that, the conserved charges

such as the energy and momentum of the boosted AdS soliton are well-defined, and an

interesting result is that its energy is lower than that of the static AdS soliton. On the other

hand, note that although the laws obtained above are the same as those of the asymptotical

flat case, the underlying deduced contents are different. Thus, our results could also be

considered as a simple generalization to the asymptotically AdS case. Moreover, during

the calculation, we find that there may be a new way to define the gravitational tension

which can come from the quasi-local stress tensor of the counter-term method.
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1 Introduction

It is well-known that the positive energy theorems ensure the energies of the solutions

approaching AdS spacetime globally cannot be negative [1–3]. However, if the considering

spacetimes are locally asymptotically AdS but not globally, the positive energy theorem

may not hold. The Horowitz-Myers AdS soliton solution is this kind of particular solu-

tion [4]. This AdS soliton solution is important not only for its negative energy, but also

for the agreement with the Casimir energy in the field theory viewed from the AdS/CFT

correspondence [5]. Furthermore, it has also been found that there is a similar phase

transition like the Hawking-Page phase transition between the Ricci flat black hole and

the AdS soliton solution, and it could be connected with the confinement/deconfinement

phase transition in QCD [6–8].

Although many properties of this AdS soliton solution have been studied, the analogy

of its energy and tension laws is absent, and it is simply because its entropy is zero and the

period of the imaginary time is arbitrary. Recently, inspired from the interchange symmetry

between the KK bubble and the corresponding black hole which are all asymptotically flat,

D.Kastor et al obtained some interesting results of the KK bubble after defining some new

quantities such as its surface gravity and the area of the KK bubble [10](Note that the

surface gravity here is associated with the spacelike Killing field which translates around

the compact spatial coordinate, and more details can be found in [11]). In our paper,

viewed from the similar interchange symmetry between the AdS soliton solution and the

Ricci flat black hole, we first reinvestigate the energy and tension laws of the Ricci flat black

hole by considering the contribution of the tension term [9, 10, 13–15], then we investigate

the analogy of the laws of the AdS soliton solution. We find the same analogy as that of

the laws of the KK bubble. In addition, we also investigate the laws of the boosted Ricci

– 1 –
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flat black hole [12]. The boosted Ricci flat black hole can be obtained from the static Ricci

flat black hole by a boost transformation along the compact spatial coordinate [18]. Note

that, because the spatial coordinate is compact, the boosted Ricci flat black hole is not

equivalent to the static one globally [16–18]. And these kind of globally stationary but

locally static spacetimes could be considered as the gravitational analog of the Aharonow-

Bohm effect [19, 20]. Similarly, for the static AdS soliton solution, we can also make a boost

transformation along the compact spatial coordinate of the static AdS soliton solution, and

then obtain the boosted AdS soliton solution. Like the AdS soliton solution, the boosted

AdS soliton solution also has the same interchange symmetry with the above boosted Ricci

flat black hole. However, there are closed timelike curves and conical singularity in the

boosted AdS soliton solution, thus this solution is ill in physics and the direct analogy of

the energy and tension laws of the boosted AdS soliton solution is of no sense. In spite

of that, its conserved charges such as the energy and momentum are well-defined, and

an interesting result is that the energy of the boosted AdS soliton is lower than that of

the AdS soliton. On the other hand, note that although here we can easily find that the

energy and tension laws of the boosted Ricci flat black hole or the AdS soliton solution

are the same as those of the asymptotical flat case, the underlying contents are not the

same. First of all, the methods of calculating the conserved charges are different. Because

what they discuss are the asymptotically flat cases, the well-known ADM calculation can

be used in their cases [10, 12]. However, it is invalid and there have been several methods

to calculate the conserved charges in the asymptotically AdS case [21–26]. Here we just

use the surface counterterm method or Euclidean method. Second, they obtain the laws by

using the Hamiltonian perturbation theory techniques [14, 27], and more expressive is that

they should use the Hamiltonian formalism presented by the ADM method [10, 12]. While

for black holes we obtain the laws just by applying the Euclidean method [22], and basing

on this we obtain the laws of AdS soliton by using the property of interchange symmetry.

During the derivation of laws, we do not need the explicit formalisms of conserved charges.

Thus, our results could also be considered as a simple generalization of the results in

asymptotically flat case to the asymptotically AdS case [10, 12].

The rest of paper is organized as follows. In section II, we reinvestigate the energy

and tension laws of the Ricci flat black hole by considering the contribution of the tension

term. In section III, inspired from the interchange symmetry with the Ricci flat black hole,

we obtain the analogy of the laws of the AdS soliton solution. In section IV, we generalize

the above discussion in section II to the case of the boosted Ricci flat black hole. In section

V, we consider the boosted AdS soliton solution. Finally, in section VI, we give a brief

conclusion and discussion.

2 Reinvestigation of the energy and tension laws of the Ricci flat black

hole

The so-called Ricci flat black hole solution considered here is [4, 5]

ds2 =
r2

l2

[

−
(

1 − r4
0

r4

)

dt2 + dy2 + (dxi)2
]

+

(

1 − r4
0

r4

)−1
l2

r2
dr2. (i = 1, 2) (2.1)

– 2 –
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which arises in the near-horizon geometry of p-brane and is asymptotically the five dimen-

sional AdS metric. It is easy to find that its event horizon locates at r+ = r0. And in

order to remove the conical singularity at the horizon, the Euclidean time τ must have

a period β = πl2

r0
. Note that, the coordinate y is a compact spatial coordinate, and its

period is η. As the usual treatment, we can use the Euclidean method to research the

thermodynamics of the Ricci flat black hole [22]. Choosing the pure AdS spacetime as the

reference background, we can easily obtain the Euclidean action of the Ricci flat black hole

IE = − βr4
0

16πl5
ηV2. (2.2)

where V2 is the coordinate volume of the surfaces parameterized by xi. Thus, the free

energy of the Ricci flat black hole evaluated on the pure AdS background is [22]

F ≡ IE

β
= E − TS = − r4

0

16πl5
ηV2. (2.3)

And the energy and entropy are

E =
∂IE

∂β
=

3r4
0

16πl5
ηV2, (2.4)

S = β
∂IE

∂β
− IE =

ηV2r
3
0

4l3
. (2.5)

From (2.5), it can be seen that the entropy S is exactly equal to 1/4 of the horizon area

A, which implicates that those thermodynamical equations hold

dF = −SdT, dE = TdS. (2.6)

It should be emphasized that we have not considered the contribution of tension term to

the laws above, i.e gravitational tension. And it is known that the gravitational tension

term could contribute to the first law in the case of the black p-branes or black string if

the size of the compact spatial coordinate is allowed to be changed. The fact is that the

geometry looks locally like the black string when is far from the horizon of the Ricci flat

black hole, thus the gravitational tension term may also contribute to the thermodynamical

laws [13]. And it is true that if assuming the free energy in (2.3) is also the function of η,

we can obtain not only the energy and entropy but also the gravitational tension

E =

(

∂IE

∂β

)

η

=
3r4

0

16πl5
ηV2,

S = β

(

∂IE

∂β

)

η

− IE =
ηV2r

3
0

4l3
,

Γ =
1

β

(

∂IE

∂η

)

β

= − r4
0

16πl5
V2. (2.7)

On the other hand, in a d + 1 dimensional spacetime M, the conserved charge associated

with the killing vector ξµ generating an isometry of the boundary geometry ∂M defined

through the quasilocal stress tensor is [21, 25]

Qξ =

∫

Σ
dd−1x

√
σ(uµTµνξν). (2.8)

– 3 –
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where Σ is a spacelike hypersurface in the boundary ∂M, and uµ is the timelike unit vector

normal to it. σab is the metric on Σ defined as

γµνdxµdxν = −N2
Σdt2 + σab(dxa + Na

Σdt)(dxb + N b
Σdt) (2.9)

and γµν is the metric on the boundary. Thus, the energy related with the timelike killing

vector ξµ and the momentum could be defined respectively as

E =

∫

Σ
dd−1x

√
σNΣ(uµTµνuν), (2.10)

Pa =

∫

Σ
dd−1x

√
σσabuµT bµ. (2.11)

According to the surface counterterm method, the quasilocal stress tensor for the asymp-

totically AdS5 solution is [21]

Tµν =
1

8π

(

θµν − θγµν − 3

l
γµν − Gµν

)

. (2.12)

where all the above tensors refer to the boundary metric γµν defined on the hypersurface r =

constant, and Gµν = Rµν − 1
2Rγµν is the Einstein tensor of γµν , θµν = −1

2(∇µnν +∇vnµ) is

the extrinsic curvature of the boundary with the normal vector nµ in the spacetime. There-

fore, we can easily obtain the useful quasi-local stress tensor of the Ricci flat black hole (2.1)

8πTtt =
3r4

0

2l3r2
+ . . . (2.13)

And the energy is

E =
3r4

0

16πl5
ηV2. (2.14)

which is consistent with the above result in (2.7). In addition, the general definition of

gravitational tension in a given asymptotically translationally-invariant spatial direction

(i.e. x) of a D dimensional space-time is [9]

Γ =
1

∆t

1

8π

∫

S∞

x

[

F (K(D−2) − K
(D−2)
0 ) − F υpµνr

ν
]

(2.15)

here S∞
x = Σx ∩ Σ∞ and Σx is the hypersurface x = const with unit normal vector nµ,

and Σ∞ is the asymptotic boundary of the spacetime with unit normal vector rµ. The

space-like killing vector Xµ corresponding to the translationally-invariant spatial direction

x is decomposed into normal and tangential parts to Σx that

Xµ = Fnµ + Fµ (2.16)

and the extrinsic curvature tensor on Σx with respect to nµ is Kµν , while K(D−2) is the

extrinsic curvature of the surface S∞
x in Σx, and K

(D−2)
0 is the corresponding extrinsic

curvature of the surface S∞
x in the reference space (M, (g0)µν). The metric with respect to

nµ on Σx is

hµν = gµν − nµnν (2.17)

– 4 –
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while the corresponding canonical momentum pµν with respect to hµν is

pµν =
1√
h

πµν = Kµν − Khµν (2.18)

Thus, from this general definition of gravitational tension (2.15), we can obtain the grav-

itational tension along the compact spatial direction y in Ricci flat black hole (2.1)

Γ = − r4
0

16πl5
V2. (2.19)

which is also consistent with the above result in (2.7). And these consistences of energy,

tension and entropy implicate that after adding the contribution of tension term the first

laws in (2.6) are

dF = −SdT + Γdη = − 1

8π
AHdκH + Γdη,

dE = TdS + Γdη =
1

8π
κHdAH + Γdη. (2.20)

where T = 1/β = κH/2π and S = AH/4. Using these conserved charges, we can also easily

check that

E − TS = Γη. (2.21)

which is very similar with the Smarr relation. Thus from (2.21) and (2.20), we can obtain

the tension law that

ηdΓ = −SdT. (2.22)

which can be found to have the same formalism with the static Kaluza-Klein black hole

which is asymptotically flat in Refs [10, 12].

3 The AdS soliton solution, interchange symmetry, and analogy of en-

ergy and tension laws

The AdS soliton solution is [4]

ds2 =
r2

l2

[(

1 − r4
0

r4

)

dy2 − dt2 + (dxi)2
]

+

(

1 − r4
0

r4

)−1
l2

r2
dr2. (i = 1, 2) (3.1)

with the coordinate r restricted to r ≥ r0. Again, the coordinate y could be identified

with period η = πl2

r0
to avoid a conical singularity at r = r0. Note that this spacetime

is completely nonsingular and globally static. And it can be obtained from the Ricci flat

black hole metric (2.1) with the double analytic continuation such that

t → iy, y → it. (3.2)

which arises an interesting interchange symmetry between the AdS soliton solution and

the Ricci flat black hole.

– 5 –
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Using the same surface counterterm method, we can calculate the useful quasilocal

stress tension of AdS soliton [21]

8πTtt = − r4
0

2l3r2
+ . . . (3.3)

Thus, the energy is

E = − r4
0

16πl5
ηV2. (3.4)

In addition, the tension of the AdS soliton (along the direction of the compact coordinate

y) from the general definition (2.15) is

Γ =
3r4

0

16πl5
V2. (3.5)

Eqs. (3.4), (3.5) can explicitly manifest the interchange symmetry with the Ricci flat black

hole compared with its energy and tension.

In the above section, during deriving the laws of Ricci flat black hole, we mainly base on

an underlying assumption that the equations (2.20) hold, and then find the consistence with

the calculations by other methods. However, for the AdS soliton solution, the first problem

is these equations may not hold because the period of the imaginary time which usually

relates with the temperature is arbitrary in the AdS soliton spacetime. Moreover, if we take

the entropy just as the usual Bekenstein-Hawking entropy (it is the 1/4 of the horizon area),

we could find the entropy is zero. Thus, the direct analogy of the mass and tension laws of

the AdS soliton solution like (2.20), (2.22) seems to be absent. In spite of that, inspired from

the interchange symmetry between the black hole and AdS soliton, it may have the analogy.

And it is true that it has been found the similar analogy of the KK bubble in ref. [10] where

it discusses the asymptotically flat case. As same as that of KK bubble, we can also first

define some new quantities, such as the surface gravity and the area of the AdS soliton. And

according to these definitions, the surface gravity and the area of the AdS soliton are [10]

κs =
2r0

l2
, As =

V2r
3
0

l3
. (3.6)

However, here we would not use the Hamiltonian perturbation techniques to deduce the

laws of AdS soliton until one finds its appropriate formalisms of the conserved charges and

gravitational tension as those of KK bubble. And we just base on its interchange symmetry

with the Ricci flat black hole (2.1). From the quantities in (3.6) and those in (3.4), (3.5),

we can make an easy displacement in (2.20), (2.21) and (2.22) by using the interchange

symmetry such that

E → Γη , T → T, S → Sη , Γ → E/η. (3.7)

Thus we can obtain the reduced relations

dΓ =
1

8πG
κsdAs. (3.8)

dE = − 1

8πG
ηAsdκs +

(

Γ − 1

8πG
κsAs

)

dη. (3.9)

– 6 –
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From which, we can easily check out that they hold by using the quantities

in (3.4), (3.5), (3.6) and see that they have the similar formalisms with the laws of

black hole. Thus they can be naturally considered as the analogy of the energy and

tension laws of the AdS soliton. The most interesting thing is that they has the same

formalism with the result of the K-K bubble in Ref [10] where it is deduced by using the

Hamiltonian perturbation theory techniques [14, 27]. Thus, it is more convincible that

they could be considered as the analogy of the energy and tension laws of the AdS soliton.

4 The energy and tension laws for boosted Ricci flat black hole

The boosted Ricci flat black hole can be obtained from (2.1) by the following boost trans-

formation [18]

t → t cosh α − y sinhα,

y → −t sinhα + y cosh α. (4.1)

where α is the boost parameter and the boost velocity is v = tanh α. Thus, the metric of

the boosted Ricci flat black hole is

ds2 =
r2

l2

[

−dt2+ dy2+
r4
0

r4
(dt cosh α − dy sinhα)2+ (dxi)2

]

+

(

1 − r4
0

r4

)−1
l2

r2
dr2. (i = 1, 2)

(4.2)

Note that, because the coordinate y in (4.1) is periodic, the solution (4.2) is not equivalent

to the static Ricci flat black hole (2.1) globally [16–18]. And in order to remove the

conical singularity at the horizon r = r0, the Euclidean time τ in (4.2) could have a period

β = πl2 cosh α
r0

. Following the same procedure as section II, at first we do not consider

the contribution from the gravitational tension term in the laws of thermodynamics. After

choosing the pure AdS spacetime as the background and using the same Euclidean method,

we can obtain the Euclidean action of the boosted Ricci black hole to be [22]

IE = − βr4
0

16πGl5
ηV2. (4.3)

Note that, although the Euclidean action is the same as that of the static Ricci flat black

hole (2.2), the relationship between β and r0 is different. Moreover, here the thermal

function related with Euclidean action is the Gibbons free energy [22]

G ≡ IE

β
= E − TS − vP. (4.4)

and G is the function of not only β but also the boost velocity v. Thus, the energy, entropy

and momentum are

E =

(

∂IE

∂β

)

v

− v

β

(

∂IE

∂v

)

β

=
(3 + 4a2)r4

0

16πl5
ηV2,

S = β

(

∂IE

∂β

)

v

− IE =
ηV2r

3
0

4l3

√

1 + a2,

P = − 1

β

(

∂IE

∂v

)

β

=
ηV2r

4
0

4πl5
a
√

1 + a2. (4.5)

– 7 –
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where a ≡ sinhα and it could be easily seen that the entropy S is also exactly equal to 1/4

of the horizon area A, which implicates that the following relations hold

dG = −SdT − Pdv,

dE = TdS + vdP. (4.6)

Again if assuming the Gibbons free energy G in (4.4) is also the function of η, we can also

obtain the gravitational tension

E =

(

∂IE

∂β

)

v,η

− v

β

(

∂IE

∂v

)

β,η

=
(3 + 4a2)r4

0

16πl5
ηV2,

S = β

(

∂IE

∂β

)

v,η

− IE =
ηV2r

3
0

4l3

√

1 + a2,

P = − 1

β

(

∂IE

∂v

)

β,η

=
ηV2r

4
0

4πl5
a
√

1 + a2,

Γ =
1

β

(

∂IE

∂η

)

β,v

= − r4
0

16πl5
V2. (4.7)

On the other hand, according to the definition, the useful quasi-local stress tensor of the

boosted Ricci flat black hole (4.2) is [21]

8πTtt =
(3 + 4 sinh2 α)r4

0

2l3r2
+ . . .

8πTty = −2 sinh α cosh αr4
0

l3r2
+ . . . (4.8)

From which the energy and momentum can be calculated to be

E =
(3 + 4 sinh2 α)r4

0

16πl5
ηV2,

P =
sinh α cosh αr4

0

4πl5
ηV2. (4.9)

where the energy and momentum are consistent with the above results in (4.7). And this

consistence could implicate that after adding the contribution of tension term the first laws

in (4.6) are

dG = −SdT − Pdv + Γdη,

dE = TdS + vdP + Γdη. (4.10)

However, if we use the general definition of gravitational tension (2.15), we can obtain

the tension

Γ
′

= −(1 + 4 sinh2 α)r4
0

16πl5
V2. (4.11)

which is not consistent with the result in (4.7). Note that, this difference has also been

found by D. Kastor et al, and they argued that the tension obtained in (4.7) was in fact

an effective tension which was related to the general tension such that [12]

Γ = Γ
′

+
vP

η
. (4.12)

– 8 –
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From which, we can also find that when the boosted velocity is zero, the general tension is

just equal to the effective tension.

Using these quantities in (4.7), (4.9), we can also check that

E − TS − vP = Γη (4.13)

Thus, from this relation (4.13) and the first energy law (4.10), the first tension law of

boosted Ricci flat black hole is

SdT + Pdv + ηdΓ = 0 (4.14)

5 The boosted AdS soliton solution

Naturally, we can also make a boost transformation (4.1) along the compact coordinate y

in the static AdS soliton solution (3.1). Thus, the boosted AdS soliton solution is

ds2 =
r2

l2

[

−dt2+dy2 − r4
0

r4
(dy cosh α − dt sinh α)2+(dxi)2

]

+

(

1 − r4
0

r4

)−1
l2

r2
dr2. (i = 1, 2)

(5.1)

Note that this solution is also different from the static AdS soliton globally, and it is easy to

see that the coordinate y in the boost transformation is compact. In addition, an interesting

result is that this boosted AdS soliton solution also has the same interchange symmetry

with the boosted Ricci flat black hole. That is, it can also be obtained from the boosted

Ricci flat black hole solution by the double analytic continuation between the time and the

compact coordinate y in (4.2). In the above section we have obtained the analogy of the

energy and tension laws of the static AdS soliton solution through the inspiration from the

interchange symmetry with the Ricci flat black hole. However, it’s easily found that there

are closed timelike curves in the boosted AdS soliton solution (5.1). Moreover, viewed from

the physical point, after boosting along the compact coordinate y in static AdS soliton (3.1),

the period of y would be shrunk to γ−1η where γ = (1 − v2)−1/2 = cosh α is the shrinking

factor. However, the new period could not avoid the conical singularity. Thus, this boosted

AdS soliton solution is ill in physics and the direct analogy of laws is of no sense. In spite

of that, the conserved charges such as energy and momentum are well defined because

they just depend on the properties of its asymptotic behavior. And the corresponding

quasi-local stress tensor of the boosted AdS soliton solution can be obtained [21]

8πTtt = −(1 + 4 sinh2 α)r4
0

2l3r2
+ . . .

8πTty =
2 sinhα cosh αr4

0

l3r2
+ . . . (5.2)

Thus, the energy and momentum of the boosted AdS soliton solution are

E = −(1 + 4 sinh2 α)r4
0

16πl5
ηV2,

P = −sinhα cosh αr4
0

4πl5
ηV2. (5.3)

– 9 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
6

In addition, the general tension can also be obtained from the definition (2.15)

Γ =
(3 + 4 sinh2 α)r4

0

16πl5
V2. (5.4)

These quantities in (5.3), (5.4) could explicitly manifest the interchange symmetry with

the boosted Ricci flat black hole, too.

6 Conclusion and discussion

One of the motivations of this paper is to obtain the analogy of the energy and tension

laws of the AdS soliton solution, which can give more understanding of this solution. In

order to obtain them, we first reconsider the laws of the Ricci flat black hole by taking

the contribution of the tension term into account. Then, inspired from the interchange

symmetry between the Ricci flat black hole and AdS soliton, we finally obtain the analogy.

In spite of that, how to understand the analogy of laws of the AdS soliton is an open

question. Particularly, whether there is some underlying physical interpretations such as

thermodynamical effects in it is worthy of further discussion. In addition, as a more general

asymptotically AdS black hole solution, we also take the boosted Ricci flat black hole for

example to give a simple generalization of the works by D.Kastor to the asymptotically

AdS case. Note that, although here our formalisms of the laws of black holes or the static

soliton are the same as those of the asymptotically flat cases, the underlying deduced

contents are different. In principle, if we find the appropriate formalisms of conserved

charges and gravitational tension, we perhaps can also use the Hamiltonian perturbation

method to deduce these laws directly. And this possibility will be considered in the future

work. As the corresponding solution which has the interchange symmetry with boosted

Ricci flat black hole, we also consider the boosted AdS soliton solution. However, although

there is the same interchange symmetry, this boosted AdS soliton solution is ill in physics

because of the existence of the closed timelike curves and conical singularity. Thus, the

direct analogy of energy and tension laws are of no sense. In spite of that, an interesting

result is that the conserved charges such as the energy and momentum are well-defined

for the boosted AdS soliton solution. Moreover, as we expected, its energy is smaller than

that of the static AdS soliton solution. Thus, whether it can be considered as a violation

case to the new positive energy conjecture proposed by G.T Horowitz and R.C Myers and

how to understand it from the viewpoint of the AdS/CFT correspondence would also be

interesting things to give further discussions. In addition, during calculating the conserved

charges, we also find that perhaps there is a new way to define the gravitational tension

from the quasi-local stress tensor defined in (2.12), because the gravitational tension can

be easily found to be related to the corresponding stress tensor Tyy such that

Ricci flat black hole : Γ = − r4
0

16πl5
V2, Tyy =

r4
0

16πl3r2
+ . . . .

Static AdS soliton : Γ =
3r4

0

16πl5
V2, Tyy = − 3r4

0

16πl3r2
+ . . . .

Boosted Ricci flat black hole : Γ = −(1 + 4a2)r4
0

16πl5
V2, Tyy =

(1 + 4a2)r4
0

16πl3r2
+ . . . .

– 10 –
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Boosted AdS soliton : Γ =
3r4

0

16πl5
V2, Tyy = −(3 + 4a2)r4

0

16πl3r2
+ . . . . (6.1)

On the other hand, viewed from the physical interpretation of the stress tensor, its spatial

diagonal components are related with the pressure, thus it is more convincible that there

is a new possibility to define the gravitational tension. In fact, considering the interchange

symmetry and the formalisms in (2.10), (2.15), we can give the new definition of the

gravitational tension through the counterterm in the asymptotical AdS case that

Γ = − 1

∆t

∫

S∞
x

dd−1x
√

σF (nµTµνn
ν) (6.2)

which can be easily checked that this new definition is satisfied in our cases.

Note that, after our paper appeared, Dr. Cristian Stelea showed me that they had

also already given an exact formalism of the gravitational tension through the counterterm

in their cases. Thus giving a more general rigorous definition of the gravitational tension

through the counterterm is an open interesting question, and perhaps some clues could be

found in their works [28].

Acknowledgments

Y.P Hu thanks Professor Rong-Gen Cai and Dr.Li-Ming Cao, Jia-Rui Sun, Xue-Fei Gong

and Chang-Yong Liu for their helpful discussions. And Y.P Hu also thanks Dr. Cristian

Stelea for his useful information. This work is supported partially by grants from NSFC,

China (No. 10325525, No. 90403029 and No.10773002), and a grant from the Chinese

Academy of Sciences.

References

[1] R.M. Schon and S.-T. Yau, Proof of the positive action conjecture in quantum relativity,

Phys. Rev. Lett. 42 (1979) 547 [SPIRES].

[2] E. Witten, A simple proof of the positive energy theorem,

Commun. Math. Phys. 80 (1981) 381 [SPIRES].

[3] G.W. Gibbons, C.M. Hull and N.P. Warner, The stability of gauged supergravity,

Nucl. Phys. B 218 (1983) 173 [SPIRES].

[4] G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy

conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079]

[SPIRES].

[5] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [Int. J. Theor. Phys.

38 (1999) 1113] [hep-th/9711200] [SPIRES];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [SPIRES].

– 11 –

http://dx.doi.org/10.1103/PhysRevLett.42.547
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,42,547
http://dx.doi.org/10.1007/BF01208277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,80,381
http://dx.doi.org/10.1016/0550-3213(83)90480-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B218,173
http://dx.doi.org/10.1103/PhysRevD.59.026005
http://arxiv.org/abs/hep-th/9808079
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9808079
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802109
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802150


J
H
E
P
0
5
(
2
0
0
9
)
0
9
6

[6] S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space,

Commun. Math. Phys. 87 (1983) 577 [SPIRES].

[7] S. Surya, K. Schleich and D.M. Witt, Phase transitions for flat AdS black holes,

Phys. Rev. Lett. 86 (2001) 5231 [hep-th/0101134] [SPIRES].

[8] R.-G. Cai, S.P. Kim and B. Wang, Ricci flat black holes and Hawking-Page phase transition

in Gauss-Bonnet gravity and dilaton gravity, Phys. Rev. D 76 (2007) 024011

[arXiv:0705.2469] [SPIRES].

[9] T. Harmark and N.A. Obers, General definition of gravitational tension,

JHEP 05 (2004) 043 [hep-th/0403103] [SPIRES].

[10] D. Kastor and J. Traschen, Stresses and strains in the first law for Kaluza-Klein black holes,

JHEP 09 (2006) 022 [hep-th/0607051] [SPIRES];

D. Kastor, S. Ray and J. Traschen, The thermodynamics of Kaluza-Klein black hole/bubble

chains, Class. Quant. Grav. 25 (2008) 125004 [arXiv:0803.2019] [SPIRES].

[11] G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries,

Commun. Math. Phys. 66 (1979) 291 [SPIRES].

[12] D. Kastor, S. Ray and J. Traschen, The first law for boosted Kaluza-Klein black holes,

JHEP 06 (2007) 026 [arXiv:0704.0729] [SPIRES].

[13] Y. Kurita and H. Ishihara, Mass and free energy in thermodynamics of squashed

Kaluza-Klein black holes, Class. Quant. Grav. 24 (2007) 4525 [arXiv:0705.0307] [SPIRES];

Thermodynamics of squashed Kaluza-Klein black holes and black strings — A comparison of

reference backgrounds —, Class. Quant. Grav. 25 (2008) 085006 [arXiv:0801.2842]

[SPIRES].

[14] J.H. Traschen and D. Fox, Tension perturbations of black brane spacetimes,

Class. Quant. Grav. 21 (2004) 289 [gr-qc/0103106] [SPIRES].

[15] P.K. Townsend and M. Zamaklar, The first law of black brane mechanics,

Class. Quant. Grav. 18 (2001) 5269 [hep-th/0107228] [SPIRES].

[16] J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46

[gr-qc/9404041] [SPIRES].

[17] A.M. Awad, Higher dimensional charged rotating solutions in (A)dS space-times,

Class. Quant. Grav. 20 (2003) 2827 [hep-th/0209238] [SPIRES].

[18] R.-G. Cai, Boosted domain wall and charged Kaigorodov space, Phys. Lett. B 572 (2003) 75

[hep-th/0306140] [SPIRES].

[19] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory,

Phys. Rev. 115 (1959) 485 [SPIRES].

[20] J. Stachel, Globally stationary but locally static space-times: a gravitational analog of the

Aharonov-Bohm effect, Phys. Rev. D 26 (1982) 1281 [SPIRES].

[21] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087] [SPIRES];

V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity,

Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES];

K. Skenderis, Lecture notes on holographic renormalization,

Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES];

– 12 –

http://dx.doi.org/10.1007/BF01208266
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,87,577
http://dx.doi.org/10.1103/PhysRevLett.86.5231
http://arxiv.org/abs/hep-th/0101134
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0101134
http://dx.doi.org/10.1103/PhysRevD.76.024011
http://arxiv.org/abs/0705.2469
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.2469
http://dx.doi.org/10.1088/1126-6708/2004/05/043
http://arxiv.org/abs/hep-th/0403103
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403103
http://dx.doi.org/10.1088/1126-6708/2006/09/022
http://arxiv.org/abs/hep-th/0607051
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607051
http://dx.doi.org/10.1088/0264-9381/25/12/125004
http://arxiv.org/abs/0803.2019
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.2019
http://dx.doi.org/10.1007/BF01197189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,66,291
http://dx.doi.org/10.1088/1126-6708/2007/06/026
http://arxiv.org/abs/0704.0729
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.0729
http://dx.doi.org/10.1088/0264-9381/24/17/016
http://arxiv.org/abs/0705.0307
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.0307
http://dx.doi.org/10.1088/0264-9381/25/8/085006
http://arxiv.org/abs/0801.2842
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.2842
http://dx.doi.org/10.1088/0264-9381/21/1/021
http://arxiv.org/abs/gr-qc/0103106
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0103106
http://dx.doi.org/10.1088/0264-9381/18/23/320
http://arxiv.org/abs/hep-th/0107228
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0107228
http://dx.doi.org/10.1016/0370-2693(95)00533-Q
http://arxiv.org/abs/gr-qc/9404041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9404041
http://dx.doi.org/10.1088/0264-9381/20/13/327
http://arxiv.org/abs/hep-th/0209238
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0209238
http://dx.doi.org/10.1016/j.physletb.2003.07.081
http://arxiv.org/abs/hep-th/0306140
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0306140
http://dx.doi.org/10.1103/PhysRev.115.485
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,115,485
http://dx.doi.org/10.1103/PhysRevD.26.1281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D26,1281
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://arxiv.org/abs/hep-th/9806087
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9806087
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9902121
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/hep-th/0209067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0209067


J
H
E
P
0
5
(
2
0
0
9
)
0
9
6

R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence,

Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].

[22] G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum

gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES];

G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr -

anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [SPIRES].

[23] L.F. Abbott and S. Deser, Stability of gravity with a cosmological constant,

Nucl. Phys. B 195 (1982) 76 [SPIRES].

[24] A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, Class. Quant. Grav.

1 (1984) L39 [SPIRES].

[25] J.D. Brown and J. York, James W., Quasilocal energy and conserved charges derived from

the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES];

J.D. Brown, J. Creighton and R.B. Mann, Temperature, energy and heat capacity of

asymptotically anti-de Sitter black holes, Phys. Rev. D 50 (1994) 6394 [gr-qc/9405007]

[SPIRES].

[26] S.W. Hawking and G.T. Horowitz, The gravitational Hamiltonian, action, entropy and

surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [SPIRES].

[27] D. Sudarsky and R.M. Wald, Extrema of mass, stationarity, and staticity, and solutions to

the Einstein Yang-Mills equations, Phys. Rev. D 46 (1992) 1453 [SPIRES].

[28] C. Stelea, K. Schleich and D. Witt, On squashed black holes in Gödel universes,
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